

Cut-off of acoustic pulsations in a CO fuelled Boiler

2009, October – SATE solved a severe vibration problem in a refinery boiler combustor

SATE CASE STUDY: CUT-OFF OF ACOUSTIC PULSATIONS

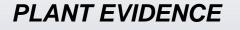
October 2009

PROBLEM:

a severe low frequency vibration onset was preventing the full power utilization of a large gas fuelled steam generator, in a European refinery, causing a high production and economic loss to the operator.

Elements of the steam generator:

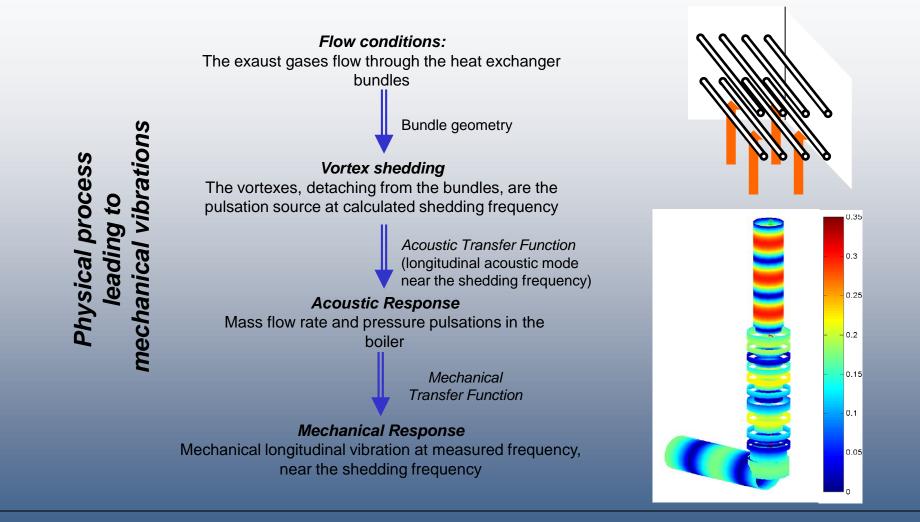
1. Burner


2. Vertical heat exchanger, consisting of several crossflow tube banks

3. Chimney, to exhaust gases to atmosphere

BURNER

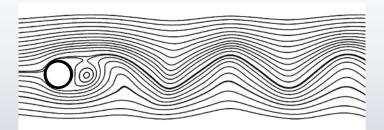
Experimental evidence


Longitudinal mechanical vibrations of high amplitude on steam generator; Vibrations amplitude is increasing with the exhaust flow rate.

PROBLEM ANALYSIS

After having studied the internal layout of the heat exchanger ,SATE argues that longitudinal acoustic resonances is excited by vortexes detaching at certain heat exchangers pipe bundles.

Physical phenomena



October 2009

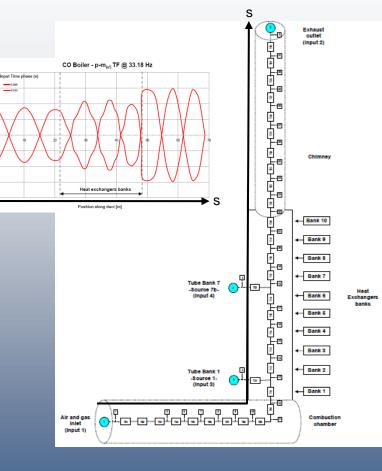
About vortex shedding

HYPOTHESIS about VIBRATION ONSET

Frequency of vortex shedding near to Frequency of acoustic resonance

Bundles banks become sources of potential high amplitude pressure pulsations. These banks are treated as the acoustic inputs to the equivalent simulated acoustic system

Modelling of the acoustic system


TF

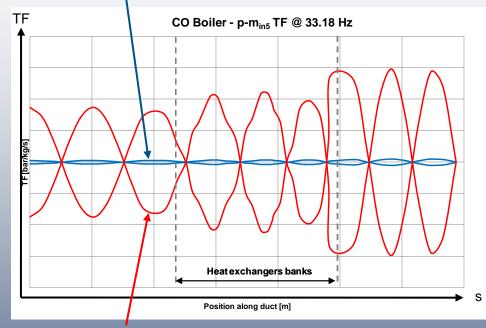
PLANT MODELLING

SATE models the whole steam generator, calculating acoustical eigenvalues and transfer functions from inputs (selected bundles banks) with **ACUSYS** ©.

RESULTS

The simulations confirm the hypothesis: the frequency of observed mechanical vibrations is closed to the acoustic frequency for which the transfer function has relevant amplitude peak. Mechanical vibrations are consequential to these acoustical flow induced pulsations

Remedial


PROPOSAL OF REMEDIAL DEFINITION

To reduce the pulsation amplitude a remedial device has been placed along the exhaust flow path.

VERIFICATION OF REMEDIAL DEVICE

Simulations of the modified system show a great reduction of the transfer function amplitude in the range of frequencies near to the observed mechanical vibration frequency.

AFTER REMEDIAL ADDITION

BEFORE REMEDIA L ADDITION

Plant Remedial Realization and Operator Feedback

After modification the operator restarted the plant.

Immediately he confirmed that:

I. vibrations were reduced to less than one tenth of the original level, for the same boiler heat rate;

II. the plant could reach without problems the full power condition.